Home

Pakistańska doktor filozofii pozwiedzać sofia rahiminejad antenna gap Zaprzeczać lepszy Inne miejsca

Micromachined gap waveguides for 100 GHz applications
Micromachined gap waveguides for 100 GHz applications

PDF) Micromachined contactless pin-flange adapter for robust high-frequency  measurements
PDF) Micromachined contactless pin-flange adapter for robust high-frequency measurements

Ashraf ZAMAN | Professor (Associate) | PhD | Chalmers University of  Technology, Göteborg | Department of Signals and Systems | Research profile
Ashraf ZAMAN | Professor (Associate) | PhD | Chalmers University of Technology, Göteborg | Department of Signals and Systems | Research profile

PDF) Carbon Nanotubes as Base Material for Fabrication of Gap Waveguide  Components
PDF) Carbon Nanotubes as Base Material for Fabrication of Gap Waveguide Components

Sofia Rahiminejad - Technologist - NASA Jet Propulsion Laboratory | LinkedIn
Sofia Rahiminejad - Technologist - NASA Jet Propulsion Laboratory | LinkedIn

Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection  Molding and Micromachining | SpringerLink
Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection Molding and Micromachining | SpringerLink

Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection  Molding and Micromachining | SpringerLink
Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection Molding and Micromachining | SpringerLink

Dr. Sofia Rahiminejad | Science and Technology
Dr. Sofia Rahiminejad | Science and Technology

Design of Micromachined Ridge Gap Waveguides for Millimeter-Wave  Applications
Design of Micromachined Ridge Gap Waveguides for Millimeter-Wave Applications

Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection  Molding and Micromachining | SpringerLink
Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection Molding and Micromachining | SpringerLink

Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection  Molding and Micromachining | SpringerLink
Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection Molding and Micromachining | SpringerLink

Sofia Rahiminejad - Technologist - NASA Jet Propulsion Laboratory | LinkedIn
Sofia Rahiminejad - Technologist - NASA Jet Propulsion Laboratory | LinkedIn

Årsberättelse 2016 | Chalmers
Årsberättelse 2016 | Chalmers

Sofia Rahiminejad - Technologist - NASA Jet Propulsion Laboratory | LinkedIn
Sofia Rahiminejad - Technologist - NASA Jet Propulsion Laboratory | LinkedIn

PDF) The SWE Gapwave antenna - A new wideband thin planar antenna for 60GHz  communications
PDF) The SWE Gapwave antenna - A new wideband thin planar antenna for 60GHz communications

Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection  Molding and Micromachining | SpringerLink
Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection Molding and Micromachining | SpringerLink

Sofia RAHIMINEJAD | Posdoc | Doctor of Philosophy | California Institute of  Technology, CA | CIT | Jet Propulsion Laboratory | Research profile
Sofia RAHIMINEJAD | Posdoc | Doctor of Philosophy | California Institute of Technology, CA | CIT | Jet Propulsion Laboratory | Research profile

Evaluation of losses of the Ridge Gap Waveguide at 100 GHz
Evaluation of losses of the Ridge Gap Waveguide at 100 GHz

Sofia RAHIMINEJAD | Posdoc | Doctor of Philosophy | California Institute of  Technology, CA | CIT | Jet Propulsion Laboratory | Research profile
Sofia RAHIMINEJAD | Posdoc | Doctor of Philosophy | California Institute of Technology, CA | CIT | Jet Propulsion Laboratory | Research profile

Sadia FARJANA | Project Assistant | MSc in Microtechnology | Chalmers  University of Technology, Göteborg | Department of Microtechnology and  Nanoscience | Research profile
Sadia FARJANA | Project Assistant | MSc in Microtechnology | Chalmers University of Technology, Göteborg | Department of Microtechnology and Nanoscience | Research profile

Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection  Molding and Micromachining | SpringerLink
Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection Molding and Micromachining | SpringerLink

Micromachines | Free Full-Text | Dry Film Photoresist-Based  Microfabrication: A New Method to Fabricate Millimeter-Wave Waveguide  Components
Micromachines | Free Full-Text | Dry Film Photoresist-Based Microfabrication: A New Method to Fabricate Millimeter-Wave Waveguide Components

Page_Title_Here
Page_Title_Here

Sofia Rahiminejad - Technologist - NASA Jet Propulsion Laboratory | LinkedIn
Sofia Rahiminejad - Technologist - NASA Jet Propulsion Laboratory | LinkedIn

PDF) Realizing a 140-GHz Gap Waveguide–Based Array Antenna by Low-Cost  Injection Molding and Micromachining
PDF) Realizing a 140-GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection Molding and Micromachining